
 

 
 

FireFly Communication Protocol v5  (1/16) 

 
 
 

FlyWire 
FireFly Development Specifications and Communication Protocol 

 

 
 
This document describes the communication protocol between a FireFly and an external sensor 
device, hereafter referred to as Master and Slave. The protocol is based on the standard Open 
Systems Interconnection (OSI) model. Only several layers of this model are implemented, due to the 
plain one-to-one connection between the Master and the Slave. 
 
Additional information on how to design a custom sensor device and implement the FlyWire 
communication protocol can be found in chapter 5. 
 
The following topics will be addressed in this document: 
 
1. Physical Layer (hardware) 
2. Data Link Layer (frame) 
3. Payload description 
4. Command list 
5. Custom sensor device 
6. EEPROM Map 
7. List of supported devices 
8. Glossary 
 



 

 
 

FireFly Communication Protocol v5  (2/16) 

 
 
 

1. Physical Layer 
 
The Physical Layer describes the transmission and reception of raw bit streams over a physical 
medium. 
This layer is implemented as a wired connection between the Master and the Slave. The FireFly has 
a female M12 X-coded connector for communicating with an external Slave. Figure 1 shows the pin 
assignment of the connector on the FireFly. An external Slave may include multiple sensors, but only 
one external Slave can be connected to a Master at a time. 

 

1.1 Communication 
The raw data is sent by using a Universal Asynchronous Receiver Transmitter (UART). A hardware 
UART peripheral is implemented in the microcontroller of the FireFly. A Slave may contain a 
hardware UART peripheral, but a software ‘bit-bang’ UART can be used if timing specifications are 
met. 
 
Two signals and a common ground are used for transmission and reception, i.e. RXD for the 
receiving and TXD for transmitting. Other signals that are commonly used for flow control, like RTS, 
CTS, DSR and DTR are not used. Interrupt-driven communication with proper data buffering should 
be adequate to omit these flow control signals. 
 
Communication is half-duplex. The Master initiates the communication and the Slave will only 
respond after a successful reception of a frame (see Network layer). 
 
The RXD and TXD signals are cross-linked between the Master and the Slave and driven at 3 V CMOS 
levels, as depicted in Figure 2. Idle state (marking bits) is at a 3 V level. The Slave should have 
enough drive strength to transmit data reliably over a 2 meter long sensor cable (AWG22, CAT6). 

 

Figure 1: Front view of the FireFly with the M12 X-coded connector. 



 

 
 

FireFly Communication Protocol v5  (3/16) 

 
 
 

 

 
The communication speed between the Master and Slave device is 19200 baud. Every character is 
sent with 1 start bit (‘0’), 8 data bits and 1 stop bit (‘1’). The data bits are shifted out with the LSB 
(Least Significant Bit) first. These settings are commonly referred to as 19200, 8, N, 1. Figure 3 
shows a timing diagram of the UART communication. 
 

 

 

One bit time (Tbit) is 1 / 19200 ≈ 52 µS. 
No horizontal parity is used since vertical parity is implemented in the Data Link Layer. 

Figure 2: Connecting Master and Slave devices using UART. 

Figure 3: UART timing diagram. 



 

 
 

FireFly Communication Protocol v5  (4/16) 

 
 
 

 

1.2 Power and Reset 
An additional signal is available on the M12 connector. This is the reset (#RST) signal of the FireFly.  
The reset can be activated by holding a magnet close to the upper side of the enclosure of the 
FireFly, near the connector. The #RST signal is active low and when activated, the FireFly will re-
initialize, blink its LEDs and it will try to join the LoRa network. 
 
The #RST can be monitored by a Slave such that action can be taken if needed. An example would 
be a scale that tares itself after detecting a falling edge on the #RST line. 
 
The #RST can also be driven by a Slave. Note that the signal should only be pulled low, as it is pulled 
high by a resistor inside the FireFly. If the external device uses a push-pull output instead of an 
open-drain output, the FireFly cannot be reset by using a magnet. 
 
The Slave can be powered by the Master from its main battery. Since the battery voltage is between 
4.2 V (fully charged) and 3.1 V (end voltage),  the Slave should have it’s own 3 V regulator to be able 
to drive its TXD signal at the appropriate 3V level. See Section 5 for further information on power 
consumption requirements. 
 



 

 
 

FireFly Communication Protocol v5  (5/16) 

 
 
 

2. Data Link Layer 
 
The Data Link Layer detects errors that may occur in the physical layer. It defines a mechanism to 
establish and terminate a connection between two physically connected devices. It also defines the 
protocol for flow control between them. 
 

2.1 Waking up the slave 
In normal operation, both the FireFly (Master) and the sensor device (Slave) are in sleep mode to 
reduce power consumption. At regular intervals the Master will wake up and measure its internal 
sensors. To get the additional data from the Slave, the Master needs to wake up the Slave before 
starting to query. 
 
Waking up the Slave is done by sending a Break character. A Break character consists of a start bit, 
followed by at least 8 data bits which are set to zero, and an (inverted) stop bit (‘0’), as shown in 
Figure 4. This is a violation of a normal byte received by a UART, since a stop bit must be a logic high, 
and is therefore considered a Break condition. To avoid character errors or character fragments 
during a wake-up event, the wake-up data bits must all be zeros. The number of data bits can be 
increased as long as their value is zero (‘0’). 13 data bits are recommended, similar to a LIN-bus 
break condition. 

   

 

For a software bit-bang UART the falling edge of the RXD signal can be used to wake up a 
microcontroller. On microcontrollers with a UART peripheral, the break feature is often 
implemented in hardware. 
 
The time it takes to wake up depends on how wake-up from sleep is implemented in the Slave’s 
microcontroller. After sending a break character a FireFly will wait for 2 ms before sending any 
commands to allow the Slave to wake up. Since crystal oscillators have a certain Oscillator Start-up 
Time (OST) some microcontrollers will wait for several Oscillator periods (Tosc) before executing 
code. Please consult the datasheet of the microcontroller and timing device to determine the 
required time-out to account for this ring-up as to guarantee proper timing. 
 
 

Figure 4: Minimum break character required to wake-up the Slave device. 



 

 
 

FireFly Communication Protocol v5  (6/16) 

 
 
 

 

2.2 Frame format 
 
The frame format is identical for both the Master and the Slave. The frame consists of 4 sections, as 
shows in Figure 5. 
 

1. Start byte (STF; start of frame) 
2. Frame length (LOF; length of frame) 
3. Payload (PYL) 
4. Checksum (CHK; XOR checksum). 

 
All bytes in a frame are in binary format. The start byte, frame length and checksum are single bytes. 
Only the payload can vary in size. The total length of the frame should be less than or equal to 128 
bytes. 
 
The start byte is 0x5A (hexadecimal) or 90 (decimal) and corresponds with ASCII “Z”. 
The LOF is the total number of bytes in the frame, including the start, length and checksum byte. 

 

 

The CHK is a single byte that represents checksum of the frame. It is calculated by bit-wise XOR-ing 
(^) all bytes in the frame, excluding itself. Below is an example of a short frame, where the STF = 
0x5A, the length of the frame is 0x04 and the actual payload is 0xF1. 
 
STF = 0x5A =  0b01011010 
LOF = 0x04 =   0b00000100 
PYL = 0xF1 =  0b11110001 
   ---------------- 
CHK = 0xAF =   0b10101111 
 

Figure 5: Frame format showing the four sections. 



 

 
 

FireFly Communication Protocol v5  (7/16) 

 
 
 

 

2.3 Timing 
 
Bytes within a frame should be sent head-to-tail with a maximum inter-byte delay of 10 
milliseconds. This equates to roughly 20 bytes at 19200 baud including start and stop bits. This 
relaxation allows for other interrupts in the system to be serviced. 
 
The communication is initiated by the Master by sending a Break character. After the connection 
has been established, successive commands can be sent by the Master. If the Slave receives a valid 
frame, the Slave should reply within 500 milliseconds. This allows for slow AD conversions of dual 
slope converters or successive approximation ADCs with a slow settling rate. 
 
If the Slave receives a partial frame or a frame with an invalid checksum, the Slave must not respond 
but it should flush its buffers and wait for a new STF. 
 
If the Master does not get a reply, the Master can re-transmit the frame after the inter-frame delay 
of 500 milliseconds, as mentioned above. No delay is needed for the Master to transmit a new 
frame after a valid frame has been received from the Slave. 
 
No additional break characters should be sent after the Slave has woken up. To get the product ID 
and serial number the correct command should be sent (see for Section 4 for more details). Due to 
the simplicity of the response to this command, a reply is expected within 50 ms. This shortened 
delay allows a FireFly to determine more rapidly whether an external device is connected. 
 
The communication is terminated by the Master by sending a Hibernate command. If no Hibernate 
command is issued the Slave should go back to its low power state if the bus is idle (marking bits) for 
more than 1000 ms. 
 
 



 

 
 

FireFly Communication Protocol v5  (8/16) 

 
 
 

3. Payload description 
 
Within a frame, the payload is the actual data that is to be transmitted. The payload is transmitted 
in binary format. 
 
The Master can send simple commands or extended commands with additional data. Simple 
commands only contain a command byte (CMD) in the payload and are used for requesting 
information like sensor data, product ID, production date or a serial number. 
 
Extended commands are used to transfer additional data to and from the Slave. Extended 
commands have additional data bytes after the CMD byte. The additional data can therefore hold a 
pointer to a memory address, the length of the data and the data itself, in case of a Write EEPROM 
command. 
Other examples are calibration parameters, calibration date, product ID or serial number. 
 
The Slave will reply with a simple ACK or NAK (Acknowledge (0x06) or No-Acknowledge (0x15)), 
followed optionally by the data itself. 
 
If a Slave receives a valid frame, but the command is not supported, the Slave must reply with a 
NAK. No reply should be sent when an invalid frame is received. 
 
 
Example of a simple command issued by the Master: 
A simple command will have only one command byte in the payload. 
STF | LOF | CMD | CHK 
 
Slave reply to a simple command: 
In case the command is supported and the data is valid, the Slave will reply with an ACK. 
Additional data bytes may follow, depending on the command. 
STF | LOF | ACK | (DATA) | (DATA) | … | CHK 
In case of an error or unsupported command, the Slave will issue a NAK. 
STF | LOF | NAK | CHK 
 
Example of an extended command issued by the Master: 
An extended command will hold one or more additional data bytes after the command byte 
STF | LOF | CMD | DATA | DATA | … | CHK 
 
Slave reply to an extended command: 
In case the command is supported and the data is valid, the Slave will reply with an ACK. 
Additional data bytes may follow, depending on the command. 
STF | LOF | ACK | (DATA) | (DATA) | … | CHK 
In case of an error or unsupported command, the Slave will issue a NAK. 
STF | LOF | NAK | CHK 



 

 
 

FireFly Communication Protocol v5  (9/16) 

 
 
 

4. Command list 
 
To comply with the FlyWire protocol some commands are obligatory to be implemented and some 
are optional. 
 
Optional commands can be omitted for Slaves that don’t have internal or external EEPROM, or 
require calibration data. An example is a Slave with only a relay that does not require any 
calibration. If a Slave receives an unsupported command, it must reply with a NAK. 
 
Standard commands range from 0x01 to 0x6F. Optional commands range from 0x70 to 0xDF. Factory 
or test commands range from 0xE1 to 0xEF. 
 
Custom commands are not specified in this document and can be used by a third party 
manufacturer to implement any commands that are not listed here. As an example a command 
could be implemented to access EEPROM above the 255 (0xFF) address limit of the standard Read 
EEPROM command. 
 
Standard commands: 
 
0x00 Hibernate 
0x01 GetID 
0x02 Request Sensor Values 
0x03 Reboot 
 
Optional commands: 
 
0x70 Read EEPROM 
0x71 Write EEROM 
0x72 Set Values 
 
Factory/test commands: 
0xE0 Stay Awake 
 
Custom commands: 
0xF0 Custom commands 
 
 



 

 
 

FireFly Communication Protocol v5  (10/16) 

 
 
 

 
Hibernate: 
0x5A | 0x04 | 0x00 | CHK 
This command will put the device to its low power sleep mode. It is used to prevent unnecessary 
power consumption. 
In normal mode the Slave will go to sleep after 1 second of no communication.  
 
The Slave will respond with an ACK: 
STF | LOF | ACK | CHK 
 
GetID: 
0x5A | 0x04 | 0x01 | CHK 
This command will get both the Product ID (PID) and Serial Number (SN) from the Slave. 
The product ID is used to identify the type of accessory that is plugged into the FireFly. A list of 
supported PIDs is maintained by Quantified. A list of currently supported devices is shown in 
chapter 6. 
 
The Slave will respond with: 
STF | LOF | ACK | PID | SN(high byte) | SN(low byte) | CHK 
Both the SN bytes make up an unsigned 16 bit integer indicating the serial number of the device. 
This number can be hard coded in firmware, but storing it in EEPROM is recommended. See chapter 
6 for the recommended EEPROM map. 
 
Get Sensor Values: 
0x5A | 0x04 | 0x02 | CHK 
This command will request the current sensor values. 
 
The Slave will respond with: 
STF | LOF | ACK | DATA | … | CHK 
The response will have one or more data bytes depending on the number of sensors in the Slave 
and the resolution of each of these sensors. The FireFly sends the data bytes in a payload and does 
not interpret them. 
The format of the data bytes must be known by the dashboard to be able to interpret the payload 
as to show the actual values. 
 
Reboot: 
0x5A | 0x04 | 0x03 | CHK 
This command will reboot the Slave, similar to a power-up. Any changes made, like the Stay Awake 
feature, should be reset. This command must be issued after recalibration, if the Slave is using 
calibration data from EEPROM. 
 
The Slave will respond with an ACK before performing the reboot: 
STF | LOF | ACK | CHK 
 



 

 
 

FireFly Communication Protocol v5  (11/16) 

 
 
 

 
Read EEPROM: 
0x5A | 0x06 | 0x70 | ADDRESS | LENGTH | CHK 
This command will read multiple bytes from EEPROM starting at location (ADDRESS). The number of 
bytes being read is (LENGTH) and must be limited to 64. Note that this potentially could lead to 
reading 
bytes beyond the 255 address limit. The Slave should fill these bytes with dummy data. See chapter 
5 about using the memory map. 
 
The Slave will respond with: 
STF | LOF | ACK | DATA | … | CHK 
The response will have one or more data bytes depending on the number of memory locations 
requested. 
 
Write EEROM: 
0x5A | 0x06 | 0x71 | ADDRESS | DATA | CHK 
This command will write a single byte to EEPROM at location (ADDRESS). Only a single byte can be 
programmed as some EEPROMs take some time to perform an erase/write cycle on a memory cell. 
Writing multiple bytes could conflict with the FlyWire timing. 
 
The Slave will reply with an ACK or a NAK: 
STF | LOF | ACK | CHK or 
STF | LOF | NAK | CHK 
 
Set Values: 
0x5A | LOF | 0x72 | DATA | … | CHK 
This command will set values in the Slave. Similar to the Get Sensor Values, the FireFly has no 
knowledge about the content or format of these data bytes. This command could be used for 
instance to set or reset a relay in a Slave. 
 
The Slave will reply with an ACK or a NAK: 
STF | LOF | ACK | CHK or 
STF | LOF | NAK | CHK 
 
Stay Awake: 
0x5A | 0x04 | 0xE0 | CHK 
This command will override the 1 second auto sleep feature of the Slave. After issuing this 
command the Slave should stay awake until a power cycle occurs, a Reboot or a Hibernate 
command. This command is useful during testing without having to send a break each time to wake-
up the device. 
 
The Slave will reply with an ACK or a NAK: 
STF | LOF | ACK | CHK or 
STF | LOF | NAK | CHK 



 

 
 

FireFly Communication Protocol v5  (12/16) 

 
 
 

5. Custom sensor device 
 
To design a custom Slave device for a FireFly several key features must be taken into consideration. 
The FireFly is a battery-powered, LoRa enabled device. A low-power design with a sleep mode is 
crucial to ensure an operational time of several months without recharging is not compromised. 
 

5.1 General design 
A single slave device is not limited to a single sensor or actuator, and may contain multiples of each.  
 
It is recommended that the slave has at least have 256 bytes of EEPROM for storing calibration 
parameters, calibration date, product ID and serial number. When no EEPROM is present, some of 
these values may be hard-coded and stored in program memory (flash). 
 

5.2 Power considerations 
A custom sensor can be powered by the FireFly through the M12 X-coded connector. The battery 
inside the FireFly is a Li-ion battery with a rated capacity of 3000 mAh. The output is fused and a 
recommended maximum current draw is 50 mA during operation. If more current or a higher 
voltage is needed, it is recommended to equip the Slave with its own power source. Current draw 
while in sleep mode must be in the µA range when powering from the FireFly battery. See Section 2 
on how to enter and exit sleep mode. The voltage on the TXD and RXD signals should remain at 3 V 
levels. 
 
The FireFly battery voltage varies between 4.2 V when fully charged and 3.1 V when nearly empty. 
A low drop-out regulator can be used to power the main processor and components and the 
optional TXD/RXD line drivers. Line drivers may be required if the processor’s TXD/RXD signals have 
low drive strength and are equipped with 100Ω series resistors. A 74LVC1G17 or similar with 24 mA 
or higher drive strength is recommended. 
 
If a higher voltage is needed, an inductive boost circuit or charge pump can be used. Take into 
account that these usually have a low efficiency and should be turned off when the Slave is in sleep 
mode. Also note that the settling time of a voltage booster may interfere with the timing 
requirements of the FlyWire communication protocol. 
 

5.3 Timing 
Communication is asynchronous, and therefore the total UART timing inaccuracy should be within 
3.5 %. The FireFly is equipped with a resonator with an accuracy of 0.5 % over temperature, so the 
maximum allowable error for a Slave should be well below 3 % for reliable communication. A low 
drift resonator or crystal is recommended. To further minimize errors, a clock frequency should be 
chosen that is a multiple of the 19200 baud rate. Examples are 1.8432 MHz, 3.6864 MHz or 7.3728 
MHz or above. These frequencies are available for crystals and resonators. 
Internal RC oscillators may be used if the microcontoller’s specifications are within these limits. 



 

 
 

FireFly Communication Protocol v5  (13/16) 

 
 
 

6. EEPROM Map 
 
The use of an EEPROM is recommended to be compatible with the FlyWire testing tool. This can be 
an internal microcontroller EEPROM or an external one. The EEPROM can be used to store the PID 
and SN instead of hard-coding it in firmware. It also allows the Slave to be reconfigured or 
recalibrated after the firmware has been uploaded, as detailed in the Read/Write EEPROM 
command in Section 4. 
 
A minimum of 256 bytes is required. A larger EEPROM can be used, but cannot be accessed with the 
Read/Write EEPROM commands due to the 8 bit memory pointer. Any memory above 255 (0xFF) 
can be used to hold critical or confidential information. 
 
 

 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 

0x00 R E S E R V E D         

0x10 D E V I C E N A M E 0x00 0x00 0x00 0x00 0x00 0x00 

0x20 PID SN 
high 

SN 
low 

PDD PMM PYY PYY CDD CMM CYY CYY      

0x30                 

0x40                 

0x50                 

0x60                 

0x70                 

0x80 C A L I B R A T I O N  D A T A 

0x90                 

0xA0                 

0xB0                 

0xC0                 

0xD0                 

0xE0                 

0xF0                 

 

0x00 – 0x0F Reserved 
 
0x10 – 0x1F These locations hold the name of the device in ASCII. Unused locations at the end 

should be padded with 0x00 
0x20 – 0x22 Product ID and Serial Number. The SN consists of two bytes forming an unsigned 

integer. High byte at 0x21, low byte at 0x22. 
0x23 – 0x26 Production date in DD/MM/YY/YY format. The year is split in two bytes. E.g. 2020 is 
  stored as 20, 20 or 0x14, 0x14 in hex format. 
0x27 – 0x2A Calibration date. Format is similar to the production date. 
0x2F  Location 0x2F is used for debugging. If its value is non-zero, the on-board LED will be 

lit as long as the Solar Chimney is active, and switch off in hibernation. When set to 
zero, the LED will always be off to preserve power. 

0x80 – 0xFF This area is reserved for calibration data and is device dependent. 
 
 



 

 
 

FireFly Communication Protocol v5  (14/16) 

 
 
 

 

 

Figure 6: Example snapshot of an EEPROM memory map 



 

 
 

FireFly Communication Protocol v5  (15/16) 

 
 
 

7. List of supported devices 
 
The list below shows the currently supported devices. This list will be updated when new devices 
become available. Custom devices can be added by requesting a PID from Quantified. 
 

PID Name Company Description 

0x00 *Reserved Quantified Test Slave 

0x01 Mega Scale Quantified Plant weighing scale 

0x02 Chimney Quantified RH and temperature sensor 

0x03 LWS Quantified Leaf wetness sensor 

0x04 Pluviometer L Quantified Rain sensor 

0x05 Probe TRH Quantified Probe with temperature and RH sensor 

0x06 QSS Quantified Spectral sensor 

0x07 Pluviometer S Quantified Rain sensor 

    

0x80 Your device Your company Your description 

    

    

 



 

 
 

FireFly Communication Protocol v5  (16/16) 

 
 
 

8. Glossary 
 
ASCII  American Standard Code for Information Interchange 
ACK  Acknowledge. 0x06. 
Baud  Communication speed in bits per second. 
CHK  Checksum. XOR of all bytes in a frame, excluding the CHK byte itself. 
EEPROM Electrically Erasable Programmable Read Only Memory. 
NAK  No acknowledge. 0x15. 
STF  Start of frame. First byte of the frame sent by both the Master and the Slave. 
LOF  Length of frame. Total amount of bytes in a frame. 
OSI  Open Systems Interconnection. 
PYL  Payload. The actual data being sent. 
UART  Universal Asynchronous Receiver Transmitter. 
TXD  Transmit data signal. 
RXD  Receive data signal. 


